
By Eric Johnson and Joshua Jones CA ERwin

Analysis and Reporting
for Business Intelligence
Solutions Built on
Microsoft SQL Server

http://ca.com/erwin/msdn
http://www.consortioservices.com
http://ca.com/erwin/msdn

2

TABLE OF CONTENTS

INTRODUCTION . 2

SQL SERVER ANALYSIS SERVICES . 3

Overall Design . 3

Cubes . 4

Performing Calculations . 5

BUSINESS INTELLIGENCE REPORTING . 7

Defining Report Needs . 7

Designing Reusable Reports . 8

Delivery Methods . 8

Ad-hoc Data Access . 8

CONCLUSION . 9

INTRODUCTION
Whether you are using a relational data store as your data warehouse, or hosting your
warehouse directly in Microsoft SQL Server Analysis Services (SSAS), you primary concern is
delivering the data to the business; this is the final step in the Business Intelligence solution.
When using SSAS, you can use it to perform a great deal of work on the data in order to
prepare it for delivery. This includes calculating trends such as sums for sales data, averages
for orders over time, and figuring out what regions of the country sell certain products
better than others. This is where the real power in SSAS comes in; helping you to extract
information from your data.

Designing a methodology for how your data is calculated, stored, and delivered at this level
is just as important as the basics of database and data warehouse design. While this phase
is a natural extension of the data warehousing concept, it should be developed as a separate
piece of the system. This is because you’ll need to create and maintain documentation on
how this process works (and why), and you need to be able to come back to this process
and scale it as the business grows.

http://ca.com/erwin/msdn

SQL SERVER ANALYSIS SERVICES
SSAS has grown over the past few years to become one of
the most robust data analysis platforms available for the
enterprise. Building on its reputation for being very easy to
start new projects in, the releases of SQL Server 2005 and SQL
Server 2008 have shown incredible growth in functionality and
scalability of the platform. To this end, many developers are
choosing to base their BI solutions in SSAS because they can
quickly develop and deploy their warehouse solutions.

A large portion of this functionality comes from the SSAS
business semantic model, called by Microsoft the Unified
Dimensional Model (UDM), which defines business entities,
logic, calculations, and metrics. Behind the scenes of any
SSAS implementation, there are either a significant number
of ETL processes loading data directly into the SSAS cube
from various other sources, or there is the relational data
store that acts as the “back-end” for the cube. The UDM
helps keep the data centered, and provides a single source
for all of the data related to the BI solution. This helps
developers create a sort of abstraction layer, hiding away
those back end processes from the front end delivery
mechanisms.

OVERALL DESIGN
When it comes to actually designing and building a data
warehouse, there are two approaches generally accepted in
the industry; the Kimball approach and the Inmon approach.
Understanding these two different methods will help you
shape your projects in the future.

In short Ralph Kimball, in his work entitled The Data
Warehouse Lifecycle Toolkit, identifies and defines the problem
of the “stovepipe”. In many enterprises, it often occurs that
independent systems, or data marts, identify and store data
in their own unique ways, much like a collection of stovepipes.
Getting data from these different systems and combining it
into a decision support system can be extremely difficult.
To help alleviate this, Kimball advocates the conformed
dimension methodology. This states that all dimensions of
interest, i.e. sales data, should have the same attributes and
aggregates in every data mart across the enterprise. This way,
a data warehouse can be built directly from the data marts
throughout the business. The primary idea here is that the
warehouse contains all of the dimensional databases for ease
of analysis, and users can simply query the warehouse directly
for all possible information needs.

3

Figure 1. A sample cube viewed from within Microsoft Visual Studio.

Bill Inmon, in his work Corporate Information Factory,
advocates are more normalized, non-dimensional format.
This means that data marts are likely to contain completely
disparate information, and the users query them directly,
instead of a data warehouse.

In general, it’s not necessary to “pick a side”; awareness of
the two different approaches will help you build every project
according to user needs and the different environmental
variables in each project.

Once you have an idea of how your data mart/data warehouse
will be built at the high level, you’ll need to dig into the actual
design of your project. For our purposes, we will use a sample
project provided with SQL Server 2008, the AdventureWorksDW
data warehouse. We will specifically be looking at the sample
Visual Studio project provided for the data warehouse. This
allows you to follow along at home, while providing a common
area for exploration of the project outside of this paper.

For those unfamiliar with the ubiquitous Microsoft SQL
Server sample company, Adventure Works is a fictional bicycle
sales company. The relational database holds sales and
employee information, and the accompanying Analysis
Services cube display that data either directly from the
relational database or via the data warehouse. All of these
samples can be downloaded from www.codeplex.com.

CUBES
Earlier in this series, we provided a high level overview of
cubes. However, it’s important to understand the fundamentals
of cubes and their various structures. Once you understand

4

what a cube is made of, understanding how to use it
becomes much more intuitive.

The cube is the foundation of a multidimensional database.
Cubes contain typically 2 or more dimensions as well as fact
data. Dimensions are what we use to describe our factual
data. Common dimensions are time, geography, and product
details. We apply these dimensions to our fact data, such as
sales, to qualify what that data means. For example, we
apply a time dimension to sales data to see how many sales
a particular employee made for each month of a year. We
may change the time dimension to look at that same sales
data quarterly, or maybe even to view year over year
comparisons. These dimensions relate to the basic concept
of dimensions in any data warehouse (not only Analysis
Services). However, they are not identical. In SSAS, dimensions
have hierarchies. Each dimension has attributes that relate
to one another in a parent-child style relationship; in other
words, a hierarchy. A classic example of a hierarchy is a
Geography dimension that has Country-State-City-Zip Code
attributes. These attributes form a hierarchical relationship
to one another.

If you are following along, Figure 1 shows the entirety of the
Adventure Works cube opened in Visual Studio. Here you can
see the facts (yellow) and dimensions (blue) in their relational

Figure 2. The “Sales Summary” measure group in Visual Studio.

Figure 3. The “Edit Measure” dialog box in Visual Studio.

http://www.codeplex.com

5

format in the center pane. On the
right you can see the Solution
Explorer, and on the left, you can see
two more explorer panes: Dimensions
and Measures.

In addition to dimensions and facts,
Analysis Services cubes contain an
object known as measures. Measures
are basically a special dimension of the
cube which are quantitative entities
used for analysis. Measures are usually
part of measure groups, which are used
to help certain navigational and design
tools to have better readability inside
the cube.

Think of measures as collections of
data columns, which may or may not
have a custom expression (calculation)
applied. For example, when browsing

the AdventureWorks project in Visual Studio, there is a “Sales Summary” measure
group (shown in Figure 2) in the Adventure Works cube.

You can see each of the measures in the measure group. If you double-click the first
measure in the list, “Order Quantity”, you’ll get the “Edit Measure” dialog box, shown
in Figure 3.

In this case, we can see that the OrderQuantity column from the Sales Summary
Facts table is being summed (in the Usage drop down). This means that this measure
is simply a sum of all OrderQuantity values, or, logically, the sum of all orders.

The final two structures you need to be aware of in a cube are members and cells.
Each hierarchy of a dimension contains one or more occurrences of that value in the
underlying dimension table. For example, Figure 4 shows the Geography dimension,
and the members “Australia” and “Canada”, with the members if each lower level
hierarchy.

Cells are the entities from which you retrieve data. Similar to cells in a spreadsheet
(though more complex in construction), they represent the intersection of the axes
of data. Unlike a spreadsheet whose values are often the intersection of two axes, X
and Y, a cell in a cube is the intersection of three axes, X, Y, and Z. In this case, X, Y,
and Z, are the intersections of dimensions. Furthermore, each hierarchical level in a
dimension intersects with other hierarchical levels in other dimensions. This is what
gives the cube its power; the presence of multiple levels of intersection between
dimensions at levels in their hierarchies.

For any given project, the cube is likely to contain many dimensions (the example
project contains 21 dimensions, and is a simple cube, relatively). When designing
your data warehouse and cube, make sure to allow yourself the freedom to include
all of the relevant dimensions to all of your facts. Don’t be daunted by the number
of dimensions, just take care to evaluate each potential dimension and ensure it is
relevant to your users’ needs.

PERFORMING CALCULATIONS
Without a doubt the most complicated portion of analyzing data is performing the
numerous calculations needed to create meaningful data for the business. This
includes enforcing a certain degree of business logic, along with tailoring the data
to meet both historic and predictive needs. Whether or not you are using a tool like
SSAS, you’re going to need this essential piece of programming. Some key calculations
that you may perform are:

• Averaging sales performance over time
• Finding standard deviations in statistics
• Summarizing product sales by region
• Predicting trends in financial performance

Generally, this math is going to be performed in your warehouse after your data is
loaded; using whichever language is native to the warehouse. For SSAS, this would
be Multidimensional Expressions (MDX); if you are basing your warehouse in the
SQL Server relational engine, you’ll probably use a combination of T-SQL and a CLR
language (C#, VB.NET). In either case, this is the bulk of the heavy development
that must happen in the warehouse.

Figure 4. The Geography dimension of

the cube.

6

One major component to developing the calculations in your
warehouse is being able to consistently re-apply those
calculations as new data is introduced. For example, you may
load your warehouse from the raw data sources weekly, and
perform all of the post-load calculations immediately following.
However, you may occasionally find situations where you’ll
get older data loaded after newer data has already been used
for calculations. Make sure to build your logic to be able to
handle old data, and make sure it will update things like
averages in derived columns without introducing invalid data.

Not only will you need to build each calculation that you
need, but in the end, when the cube is built and processed,
there are some cases where the order of calculations and
manipulations of the cube is necessary. With Analysis
Services, all of this work is done via an MDX script that
executes all of the pieces of logic built in to the cube. If
you are already familiar with MDX, you can look at the
commands being executed and understand what is happening.
However, not all of us are MDX experts.

Fortunately, using Visual Studio to develop your Analysis
Services project, you have the option of using a graphical

interface to help develop the calculations you need to
perform, and build the overall processing script for the cube.
Figure 5 shows the main interface for calculations and
script tasks.

On the left hand side, you can see the Script Organizer pane
(top) and the Calculation Tools pane (bottom). The bottom
pane has all of the pre-built tools, such as aggregations and
templates available for you to use. The top pane is literally
showing you, command by command, what the processing
script is going to do. In this case, we have the 6th step
highlighted. This is the “Internet Gross Profit” calculation
step. A close up of the center pane for this step is show in
Figure 6.

Here we can see the name of the script step, as well as the
hierarchical position and expression actually being used.
Below we see the properties and meta-data around this step.
Contrast this with Figure 7, which is the script view of this
same step (achieved using the toolbar at the top of the pane).

Notice that this is actually showing you the entire script; but
because we had selected the “Internet Gross Profit” step in

Figure 5. Visual Studio interface for calculations and script tasks.

the graphical view, and placed our cursor at the corresponding location in the pro-
cessing script. This is showing us the actual MDX used to perform this calculation.
Flipping back and forth between these views is a great way to learn MDX. As you
use the graphical version, you can flip over to the script to see what you’re building
as you go. You can also use the graphical version to literally click and drag steps to
rearrange the order of operations in the script.

By exploring the sample project, you’ll find that there are a significant number of
pre-built calculations. Most of the calculations that the average data warehouse
uses can be found in the built-in collection; if you need to do something more

complicated, you’ll need to use MDX
queries explicitly to create those
calculations yourself. However, the
nuances of MDX are outside the scope
of this paper, but there are plenty of
references available on the web and in
your local bookstore.

BUSINESS INTELLIGENCE
REPORTING
Once you’ve loaded and calculated all
of your data, and have a scalable,
resilient process that can update that
data, you have to figure out how your
business will access that data. There
are tools available that can allow
business users direct access to your
cube and/or data warehouse, allowing
them to create and save reusable
custom queries. You may also need to
“push” the data to your users in the
form of a report. Generally, this method
requires some sort of skilled personnel
to take requests from the business
users and turn it into readable reports
that can be accessed via an internet
browser (such as an intranet page
hosted in Microsoft Office Sharepoint
Services) or emailed directly to the
user. There are a number of high profile
reporting tools available in the market-
place today; Business Objects’ Crystal
Reports and Microsoft SQL Server
Reporting Services just to name a few.

DEFINING REPORT NEEDS
As with any application development,
designing and developing reports starts
with interviewing users and getting
detailed specifications about what the
report should contain. You’ll not only
need to know what types of data are
to be included, but what range of dates
should be evaluated, as well as the
level of detail. This tends to vary by
user; managers and higher ranking
employees tend to want to see
aggregated data over large periods of
time, such as monthly, quarterly, or
year over year. First level managers
tend to want to see more detailed data
presented at the daily or weekly level.

7

Figure 6. Calculations for manipulating data in Visual Studio.

Figure 7. The script that executes the calculation.

8

You’ll often find that you will design multiple reports that
contain more or less the same data, but evaluated against a
different time measure. Because of this, it is almost always
worth your time to consider, when writing any report,
whether or not that report could be re-used by another user.

DESIGNING REUSABLE REPORTS
Because the data warehouse is supposed to be the “single ver-
sion of the truth” in your enterprise’s data, nearly every
department or type of employee is going to want to retrieve
data from it. If you custom build reports for every single
request, you’ll quickly find yourself knee deep in reports that
are 90% alike. Whenever you write a report, consider the
type of data that is being retrieved and presented. Ask your-
self, “Can I repurpose this report to fit another need?” Or,
build reports that have both aggregated and detailed data
available. Many report users will want to use a browser to
access their report; this means you can build reports with drill-
down capabilities. This means you can provide reports on
topic areas such as “Sales by Region” or “Annual Sales”, and
build sub-reports into those reports that allow drill downs
into more detailed data (by month, by state, etc.). Doing so
will allow you to satisfy both the high level user looking for
aggregated, trend oriented data as well as the low level,
operational oriented user. In the end, this can save you a lot
of development time.

Additionally, when you combine tools like SQL Server
Reporting Services (SSRS) with Analysis Services, you allow
yourself the luxury of taking advantage of features designed
to support more efficient development. For example, SSRS
reports natively support SSAS as a data source. And because
of this integration, SSRS understands how to quickly navigate
the cube in SSAS< meaning that you can build a drill down
report from summary to detailed data in minutes, without
having to write a completely new set of queries for the data.
This can help minimize development time, and give you
extreme flexibility in report design.

DELIVERY METHODS
Once you’ve gotten a report (or dozens of reports) written,
you will have to deploy those reports. The current industry
tendency is to provide access to reports via a web
interface, hosted on an intranet or secure extranet site.
These kinds of interactive reports are extremely versatile,
and help designers provide useful reports in a single place.
However, some users need static reports delivered to them,
often via email. Fortunately, most modern reporting tools
allow an email export of a static report. SSRS even goes so
far as to offer subscriptions, which allow users to specify
how often they receive a report, and whether or not they
want a fresh version of the report rendered and set.

Conversely, administrators can specify that certain, highly
utilized reports be run in the morning and cached through-
out the day, so as to reduce overhead on the reporting
system and provide a consistent report to all users. SSRS
even offers a data-driven subscription, which allows
designers to build and deliver reports based on conditional
data in a database. This means you can have an endless
number of criteria determine when and how a report gets
generated. This way, you can customize the reporting
system to meet your specific environment.

AD-HOC DATA ACCESS
Besides actual reports, many users, particularly business
analysts, will actually need to access the data warehouse
and/or cube in an interactive way. They need to be able to
look at different views of the data in order to start identifying
trends, and predicting future business performance. This type
of ad-hoc access can be provided via in-house developed
applications, or via third-party applications such as
ProClarity or Business Objects.

Typically, these types of applications are graphical interfaces
for query engines that submit MDX queries to the ware-
house and present the results to the user in an east to read
format. This usually includes drill down capabilities, so as to
be able to present aggregated data first, and exploratory
detailed data as the user requests it (by click through). The
benefit of using these applications is not only ease of use for
the user, but because it’s also more secure. You can restrict
access to more sensitive information based on the users
login to the query tool, versus trying to control that access
at the SSAS or even SQL Server level.

Microsoft provides some built-in functionality to accommo-
date this type of access; the Report Model. Report models
are built by using Visual Studio (using the Report Model
project type), the Report Manager (Reporting Services), or
even Microsoft Office Sharepoint Server 2007 (MOSS). These
models can be based on SQL Server databases, SSAS 2005 or
later cubes, or Oracle databases running version 9.2.0.3 or
later. This model is basically a meta-data version of your
data. The front end tool, whether it’s Reporting Services or
some other product, will have a “friendly name” version of all
of your databases, columns, dimensions, etc. This makes
ad-hoc access much easier, as well as report design. A wizard
is provided to build models, and allows you to customize
which facts and dimensions are present in a given model.
This means you can create models as small or large as fits
the end user requirements. Often, model could be built to fit
departmental needs for most users, with one or two large,
all encompassing models for higher level managers and
analysts.

CONCLUSION
Modeling and building a data warehouse is a formidable project to undertake. When
in the design and development phases, it tends to use a lot of resources as well as
take considerable time. The payoff for the business comes once the historical data
can be put to good use through analytics and delivery. However, considerable
attention must be paid to this final phase of a BI solution.

There is much more to SQL Server Analysis services, such as custom data mining
and advanced cube design. To get started, download the sample applications and
projects from the web, and start learning to use this powerful tool.

Josh Jones and Eric Johnson are the Operating Systems and Database Systems
Consultants, respectively, for Consortio Services, as well as co-hosts for the popular
technology podcast “CS Techcast” (www.cstechcast.com). They offer consulting
and training services in many areas of Information Technology. Check our
www.consortioservices.com for more information. Eric and Josh have written a
combined three books including the forthcoming “A Developers Guide to Data
Modeling for SQL Server”.

9

Visit: ca.com/erwin/msdn.

CA ERwin Data Modeler provides a way

to create a logical structure of your data

and map that structure to a physical

data store.

ca.com/erwin/msdn

http://ca.com/erwin/msdn
http://ca.com/erwin/msdn
http://www.consortioservices.com

