

Dynamic load balancing of the N-body problem

Roger Philp

Intel HPC Software Workshop Series 2016
HPC Code Modernization for Intel® Xeon and Xeon Phi™
February 18th 2016, Barcelona

This material is based on Chapter 11 of the Parallel Pearls book Volume 1.

The N body problem

Models the attraction of N particles in space acting under a force, or potential field

Typical examples are gravitational, or electrostatic

Example Gravitational N Body kernel

$$\forall i \in \{1 \dots N\} m_i \mathbf{a}_i = G \sum_{i \neq j} \frac{m_i m_j}{d_{ij}^2} \mathbf{u}_{ij}$$

note \mathbf{a}_i and \mathbf{u}_{ij} are vector quantities

The nature of the problem means that the computation scales as the square of the number of particles being considered.

Platform information

Hardware environment

- Intel® Xeon® E5-2620 v2
 - 2 socket
 - 6 cores per socket
 - 2 HTs per core
- 2x Intel® Xeon Phi™ 31S1P
 - 57 cores
 - 4 threads per core

Software environment

- Linux Ubuntu 15.04 (vivid)
- Intel® C/C++ Compiler 15.0.3.187 (build 20150407)

Computational Optimisation Approaches

- As the number of particles in an N Body simulation scales computation become intractable.
- Tricks and techniques must be developed in order to execute the computation.
- We use a combination of Xeon and Xeon Phi processors to explore optimisation of the simulation.
- In this presentation we examine the following approaches:

Native – processing done by the main processor

Symmetric – processing load shared between the processor and co-processor*

Offload – Processing done by the co-processor*

*These models require data transfer between the main processor and co-processing devices.

Scientific Tricks to simplify the algorithm

To limit the n-body calculations try:

Region cutoff: first square cutoff then radial cutoff

Ewald summation eg DLPOLY, this works for periodic coulombic force calculations. Long range forces done using Fourier transforms.

But this talk is regarding the computer science of the solution.

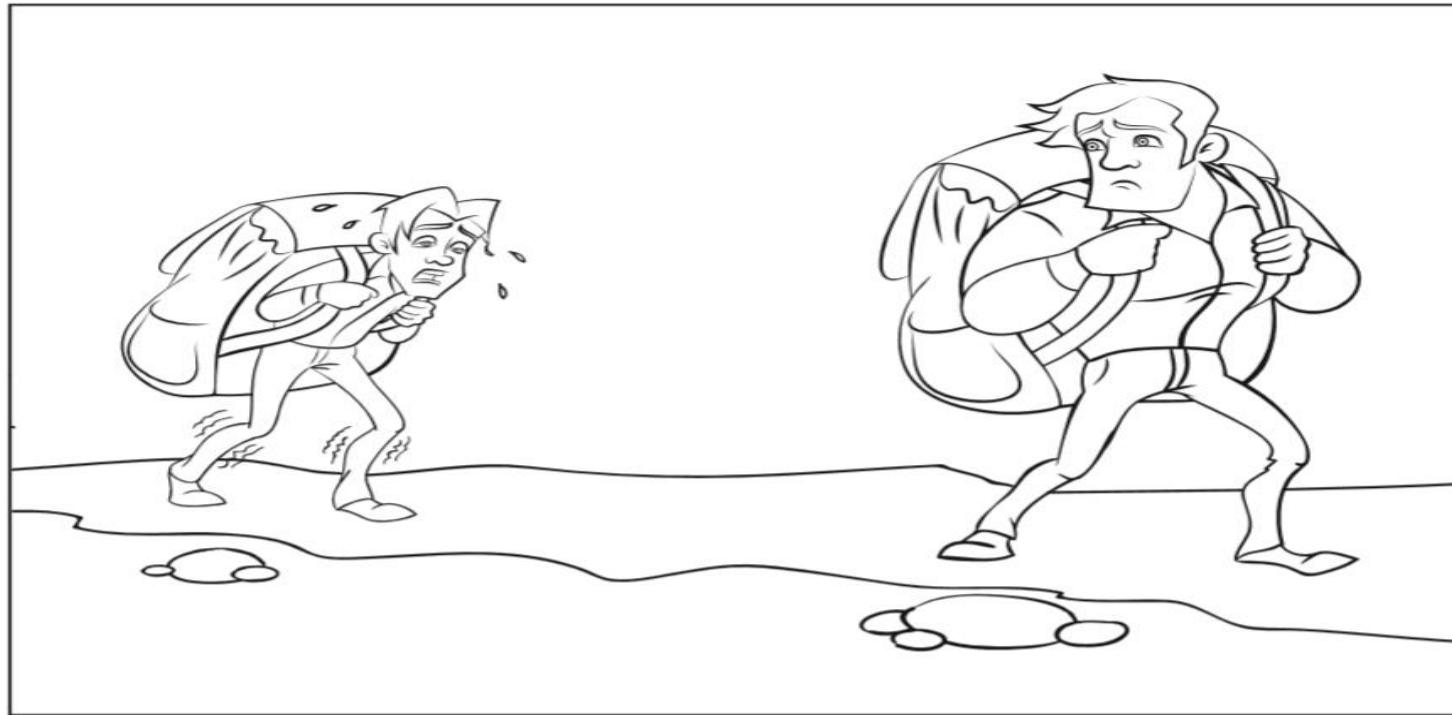
How best to use the resources of the system to solve the problem.

Summary of differences between software versions of the N body simulation engine

The various optimisation steps are as follows:

- nbody-v0.cc: OpenMP as usual, able to run either on host Xeon processors or in native mode on one hosted Xeon Phi co-processor.
- nbody-v1.cc: offload mode version of the code, running on the host and offloading the computations to one Xeon phi device.
- nbody-v2.cc: uses all hosting Xeon cores and one Xeon Phi device at the same time. Load balancing between the two parts is dynamic and should always distribute the optimal amount of work to each sides of the machine. In this code, no overlapping is done during the data transfers between host and device.
- nbody-v2.1.cc: same as previous with only an extra refinement to overlap sends and receives of data between host and device.
- nbody-v3.cc: final version able of using an arbitrary number of devices on a machine, included none. This version will always use all Xeon and Xeon Phi co-processors it finds, and balance their respective workload as evenly as possible. Data transfers are reasonably overlapped but the code could be improved in that regards (if a performance difference between versions 2 and 2.1 showed it was beneficial).

Need to match the workload to the capacity of the component of the system to perform that work.



N Body Kernel

N Body Kernel

Present a first version

Code in Red enable simple optimisations

```

// Function computing a time step of Newtonian interactions for our entire
// system
void Newton( size_t n, real dt )
{
    const real dtG = dt * G;
    #pragma omp parallel
    {
        #pragma omp for schedule( auto )
        for ( size_t i = 0; i < n; ++i )
        {
            real dvx = 0, dvy = 0, dvz = 0;
            #pragma omp simd
            for ( size_t j = 0; j < i; ++j )
            {
                real dx = x[j] - x[i], dy = y[j] - y[i], dz = z[j] - z[i];
                real dist2 = dx*dx + dy*dy + dz*dz;
                real mOverDist3 = m[j] / (dist2 * Sqrt( dist2 ));
                dvx += mOverDist3 * dx; dvy += mOverDist3 * dy; dvz += mOverDist3 * dz;
            }
            #pragma omp simd
            for ( size_t j = i+1; j < n; ++j )
            {

```

```

                real dx = x[j] - x[i], dy = y[j] - y[i], dz = z[j] - z[i];
                real dist2 = dx*dx + dy*dy + dz*dz;
                real mOverDist3 = m[j] / (dist2 * Sqrt( dist2 ));
                dvx += mOverDist3 * dx; dvy += mOverDist3 * dy; dvz += mOverDist3 * dz;
            }
            vx[i] += dvx * dtG;
            vy[i] += dvy * dtG;
            vz[i] += dvz * dtG;
        }
        #pragma omp for simd schedule( auto )
        for ( size_t i = 0; i < n; ++i )
        {
            x[i] += vx[i] * dt;
            y[i] += vy[i] * dt;
            z[i] += vz[i] * dt;
        }
    }
}

```

Parallelised version of Kernel

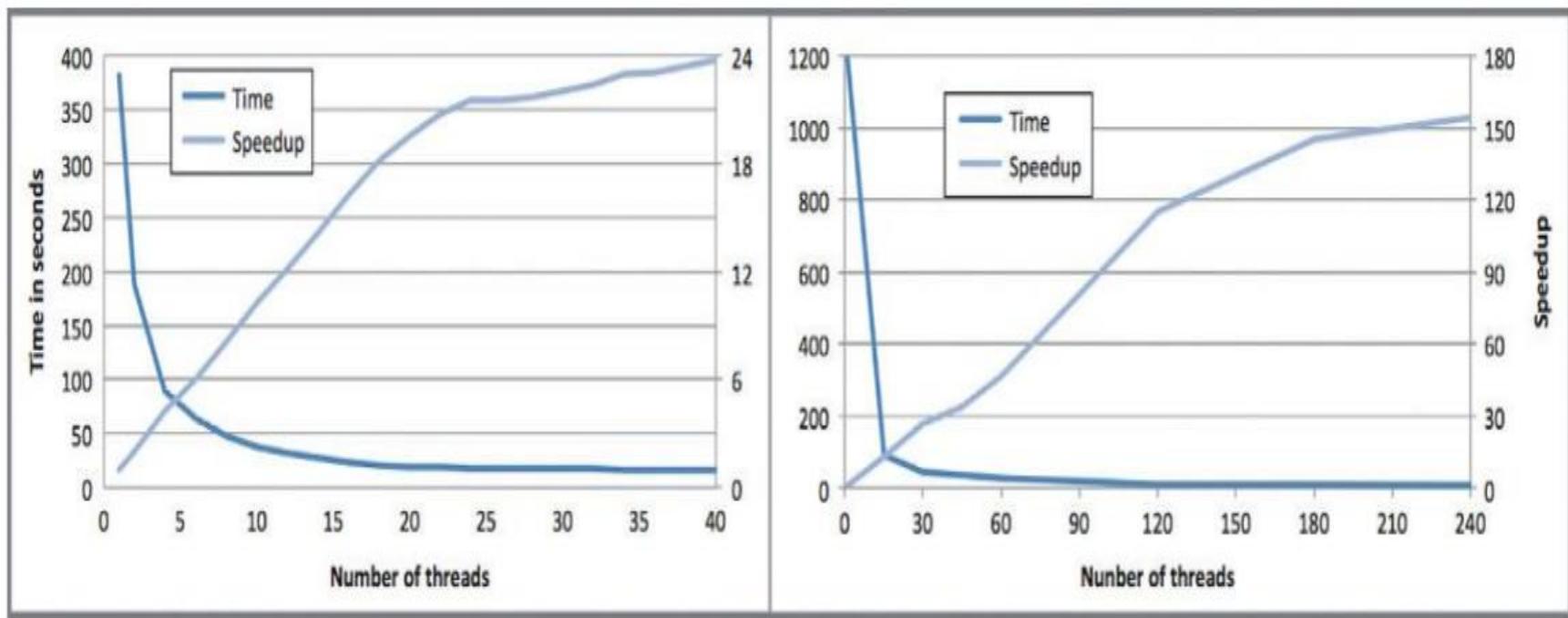
1. Enclose the whole body of the function in an OpenMP parallel construct
2. Add OpenMP for directives
3. Add open a schedule(auto) directive to the for constructs
4. Add two OpenMP simd directives to force the compiler to vectorise the loop over J and I
5. Split the inner loop into two;
ranges (0 to I, i_1 to N) to avoid the cost of the equality test
 $i == j$

Modifying the code to offload is easy: specify target and data. This forces the compiler to create two versions of code; processor and co-processor

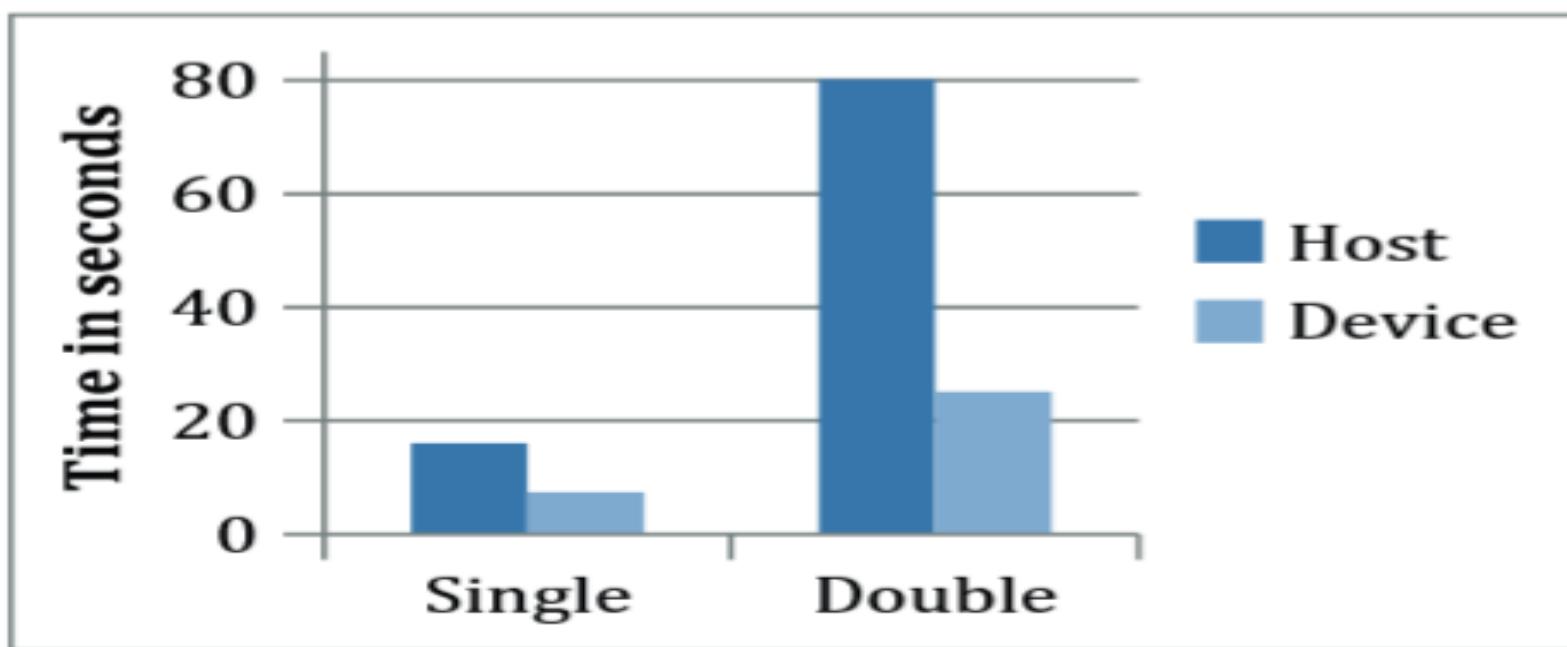
```
#pragma omp target data
    map (tofrom: x[0:n], y[0:n], z[0:n])
    map (to: vx[0:n], vy[0:n], vz[0:n], m[0:n] )
For (int it=0; it<100; it++)
{
    Newton(n, 0.01);
}
```

Inadequate Load Balancing

Results indicate speed up as we increase the number of threads (2 processors – left, coprocessor – right).

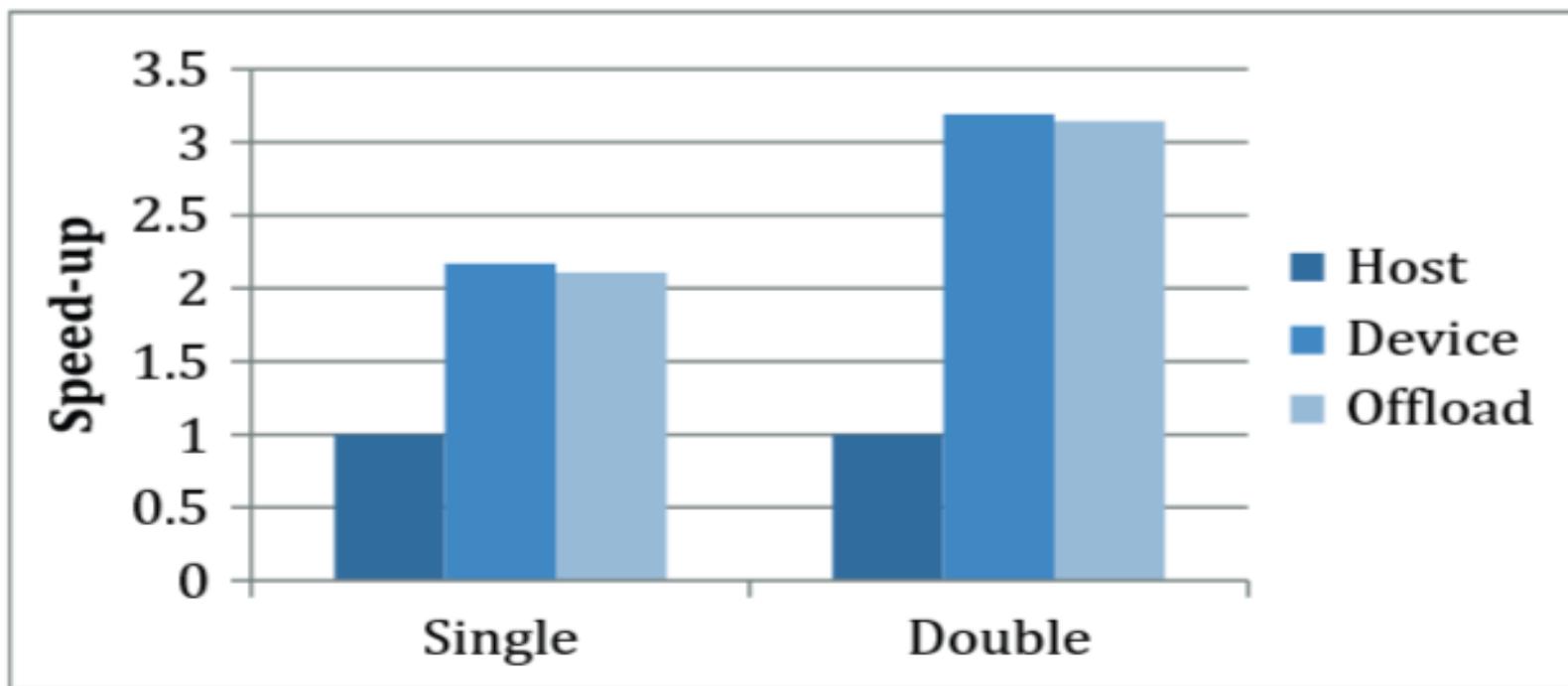


Offloading decreases the computation time for both double and single precision calculations (2 host processors, and one coprocessor)

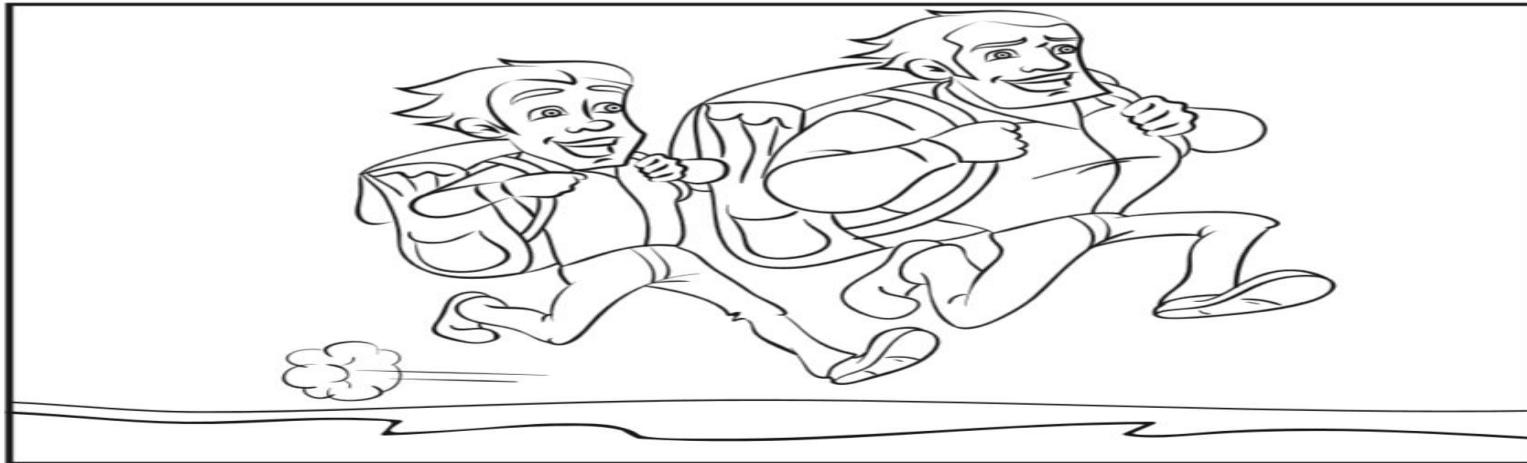


Both the host and the Offload device are working at capacity – they can now share the workload.

We see that a speedup occurs when involving offload, but there is a fine balance.



Well used processors – workloads tailored to match individual capacities.



- This requires configuring the system to run parallel on the host and the offload device:
`omp_set_nested(true)`
- We need to create 2 threads to allow the host and the device part to work together
`#pragma omp parallel num_threads(2)`

Offload example of Newton Kernel

```

// Updated interface for the Newton function: it now takes two extra parameters
// n0 and n1 corresponding respectively to the first and last indexes to compute
void Newton( size_t n0, size_t n1, size_t n, real dt )
{
    const real dtG = dt * G;
    // Now the work is done on the device if and only if the first index to
    // process is 0. The work is done on the host otherwise
    #pragma omp target if( n0 == 0 )
    #pragma omp parallel
    {
        #pragma omp for schedule( auto )
        for ( size_t i = n0; i < n1; ++i )
        {
            real dvx = 0, dvy = 0, dvz = 0;
            #pragma omp simd
            for ( size_t j = 0; j < i; ++j )
            {
                real dx = x[j] - x[i], dy = y[j] - y[i],
                    dz = z[j] - z[i];
                real dist2 = dx*dx + dy*dy + dz*dz;
                real mOverDist3 = m[j] / (dist2 * Sqrt( dist2 ));
                dvx += mOverDist3 * dx;
                dvy += mOverDist3 * dy;
                dvz += mOverDist3 * dz;
            }
            vx[i] += dvx * dtG;    vy[i] += dvy * dtG;    vz[i] += dvz
            * dtG;
        }
        #pragma omp for simd schedule( auto )
        for ( size_t i = n0; i < n1; ++i )
        {
            x[i] += vx[i] * dt;  y[i] += vy[i] * dt;
            z[i] += vz[i] * dt;
        }
    }
    #pragma omp end declare target
}

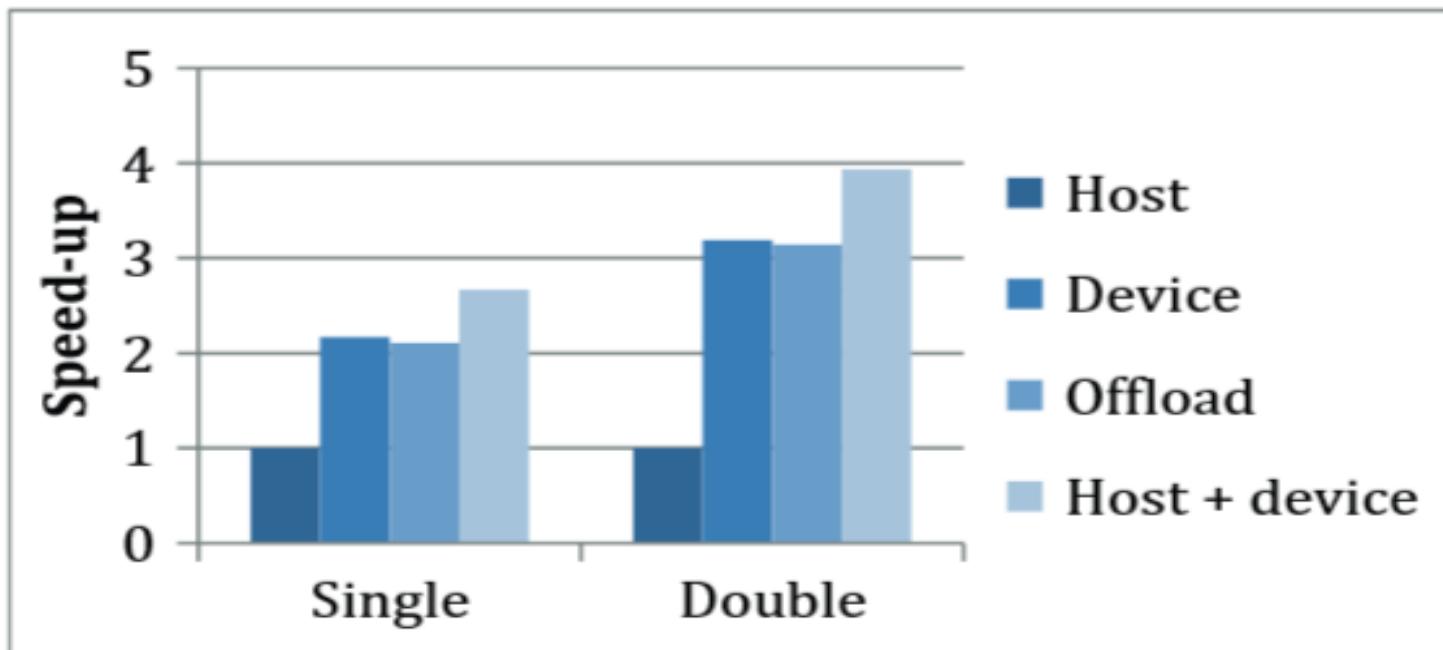
```

Balanced host plus N body Kernel

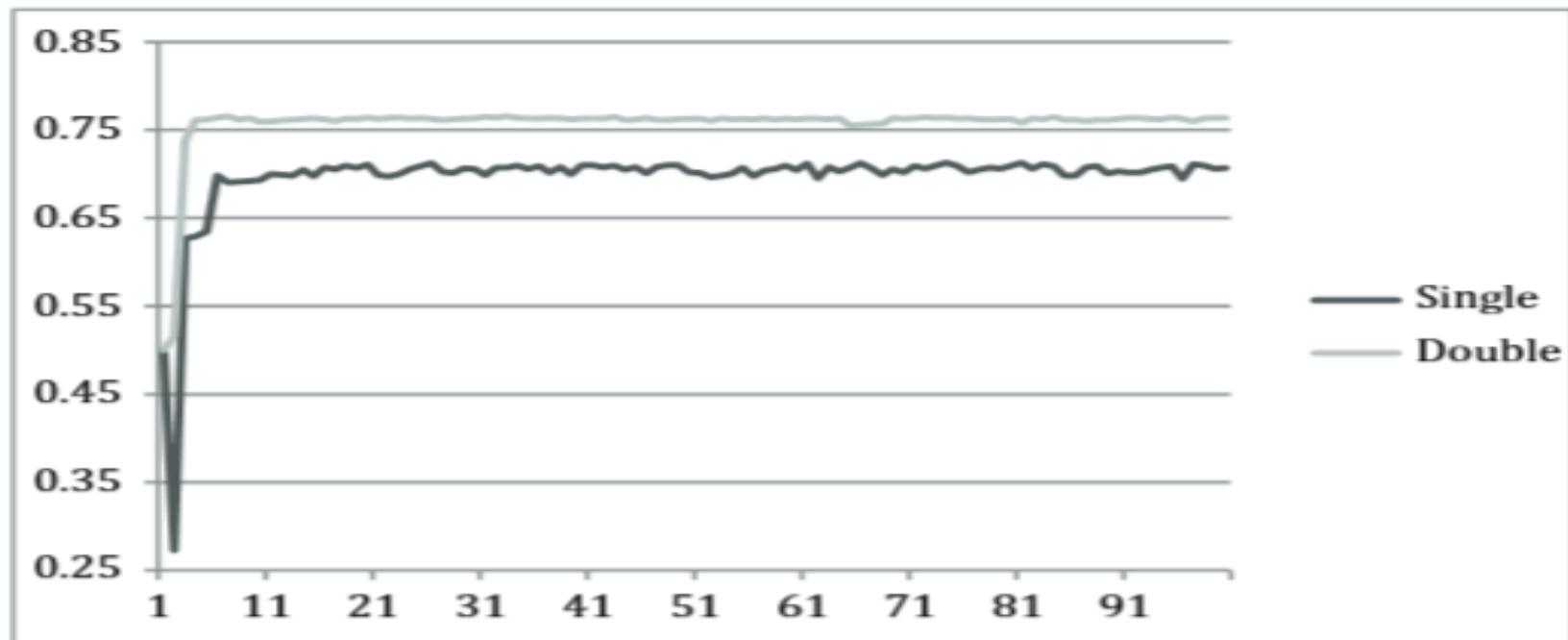
Calculation is done in a multithreaded OMP loop, but the update of the data is synchronised and executed by a single thread, first the data is extracted from the coprocessor then new data is loaded to the coprocessor.
Dynamically adjust the number of iterations for host and co-processor according to the measured performances of both devices.

```
Omp_set_nested(true);                                #pragma omp barrier
Double ratio = 0.5;                                  #pragma omp single
Double tth[2];                                     {
# pragma omp target data\                                # pragma omp target
    map (to: x[0:n], y[0:n], z[0:n], vx[0:n],        update from(x[0:lim],
        vy[0:n], vz[0:n])                                y[0:lim], z[0:lim],
{                                                vx[0:lim], vy[0:lim],
# pragma omp parallel num_threads(2)                  vz[0:lim])
{                                                # pragma omp target
    const int tid = omp_get_thread_num();            update to(x[0:lim],
    for (int it=0; it<100; ++it)                    y[0:lim], z[0:lim],
{                                                vx[0:lim], vy[0:lim],
    size_t lim=n*ratio;                            vz[0:lim])
    size_t l=n-lim;                                }
    double tt = omp_get_wtime();                    }
    Newton(lim*tid, lim+l*tid, n,                 }
    0.01);                                         tth[tid] = omp_get_wtime()-tt;
    tth[tid] = omp_get_wtime()-tt;
    ratio = ratio*tth[1]/(ratio*tth[1] + (1-ratio)*tth[0]);
```

We see predictably there is a speed up in the calculation as we include the Xeon-Phi platform. Greater for double precision calculations



After a short warm up phase the proportion of the work offloaded to the coprocessors and processor stabilises.



Productive Offloading to multiple devices

Test for number of devices, map data accordingly, set up a parallel for loop for calculation

```
Const int dev = omp_get_num_devices();
#pragma omp parallel num_threads(dev+1)
{
    {
        int tid = omp_get_thread_num();
        #pragma omp target data device(tid)
            map(to:x[0:n], y[0:n],
                z[0:n], m[0:n], vx[0:n],
                vy[0:n], vz[0:n])
        for(int it=0; it<100; ++it)
        {

```

- Omp_get_num_devices returns the number of devices possible to OFFLOAD
- Device(int) specifies a particular device to be OFFLOADED to
- The trick is to use one thread per device to do the work

Load Balancing between multiple devices – mathematical analysis

Overall aim is to prevent all of the threads in the system from being idle.

So need to alter the amount of work given to each of the system components to ensure that each portion of the work is concluded at the same time. This is done using the following formula.

$$r' = \frac{t_h r}{t_h r + t_b r}$$

r' This is the new ratio to be used in the next iteration

r This is the ratio of the work done at the device on the previous iteration.

t_h Time spent on the computation on the host

t_b Time spent on computation on the device

Normalisation condition

$$\sum_{i=0}^{dev} r'_i = 1$$

- Measure time
- Calculate proportions
- Divide work accordingly

Load balancing between multiple devices

Assume each compute device runs at its own speed.

We can compute the starting indices for each off-load device (derivation in Parallel Pears book)

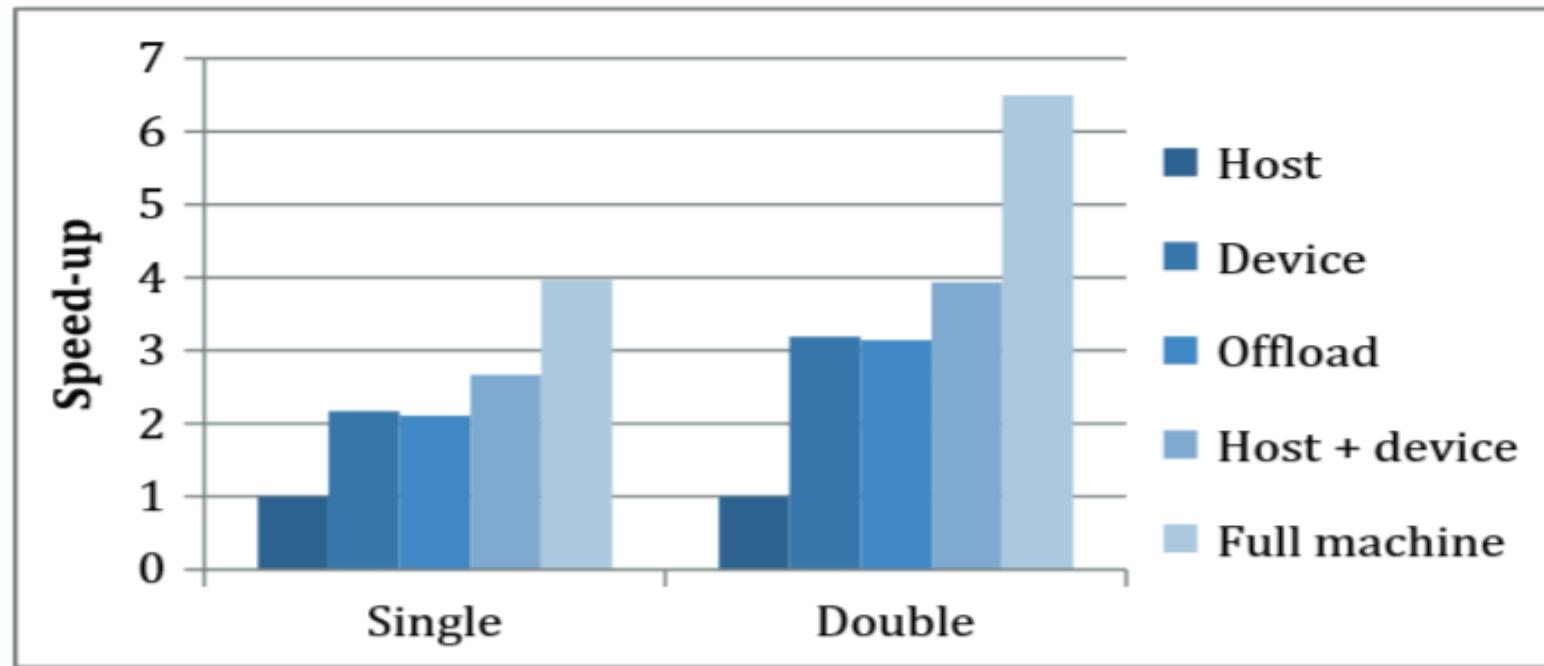
The retrieval of the results from the offload device is done within a critical section. Whereas the loading of the computation to the offload devices is done in parallel.

```

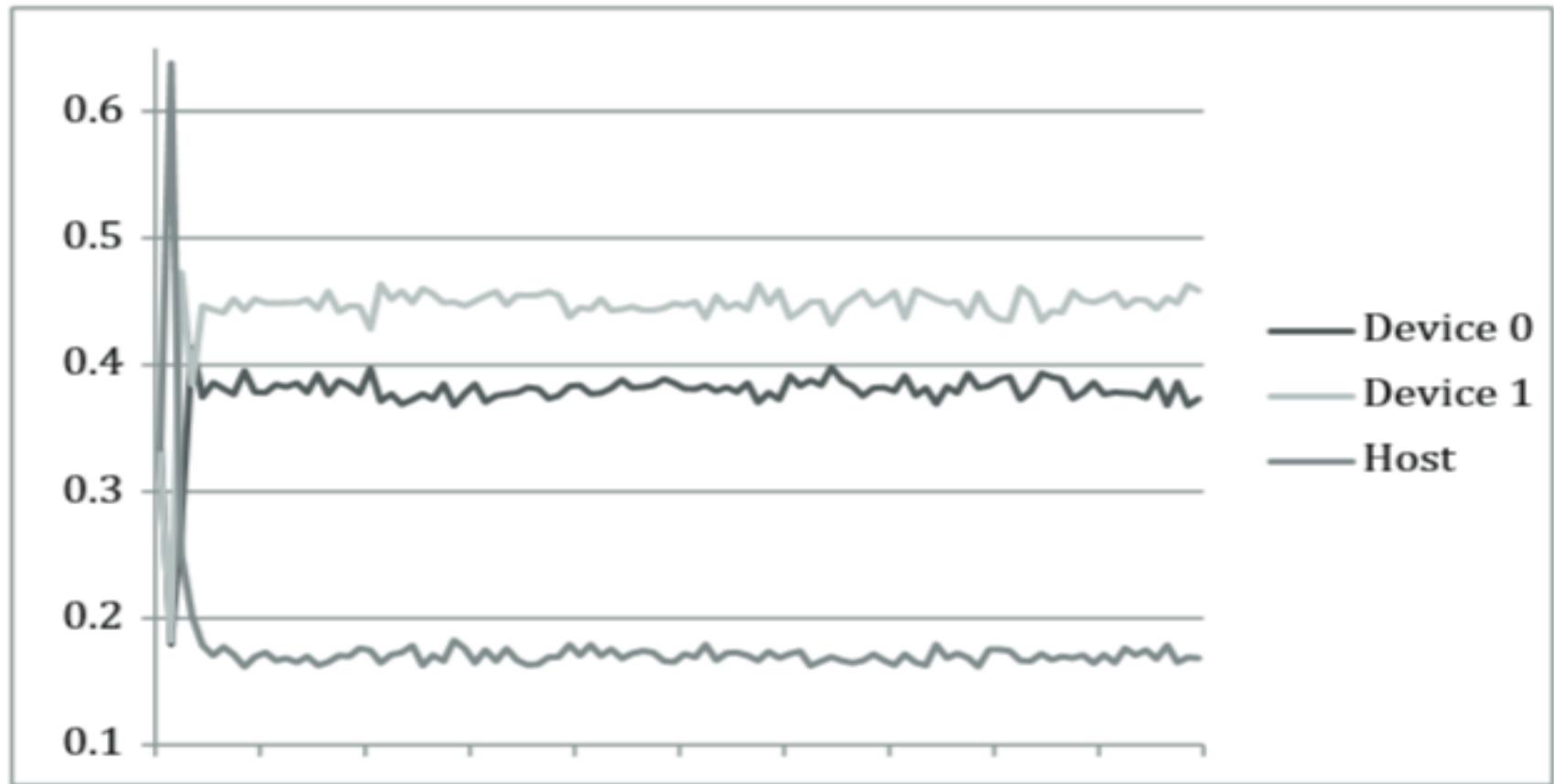
For int it=0; it<100; ++it)
{
    size_t s = displ[tid], l = disp[tid+1] – disp[tid];
    double tt = omp_get_wtime();
    Newton(n, s, l, 0.01, tid, dev);
    tth[tid] = omp_get_wtime() – tt;
    #pragma omp critical
    {
        #pragma omp target update device (tid)
        {
            if(tid<dev)
            }
            from(x[s:l], y[s:l], z[s:l],
                  vx[s:l], vy[s:l], vz[s:l])
        }
        #pragma omp barrier
    }
    #pragma omp target update device(tid)
    if(tid<dev)
        to (x[0:s], y[0:s], z[0:s],
             vx[0:s], vy[0:s], vz[0:s])
    size_t s1 = s+1, l1=n-s-l;
    #pragma omp target update device (tid)
    if(tid<dev)
        to (x[s1:l1], y[s1:l1], z{s1, l1},
             vx[s1:l1], vy[s1:l1], vz{s1, l1})
    #pragma omp single
    computedisplacements (displ, tth, dev);
}

```

Predictably the more hardware we use the greater the speed up



Evolution of the ratios of the workloads with time



Thankyou